Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Masoud Rafizadeh,^a Maryam Ranjbar^b* and Vahid Amani^a

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ^bChemical Industries Research Center, Iranian Research Organization for Science and Technology (IROST), 71 Forsat St., Enghelab Ave., 15819 Tehran, Iran

Correspondence e-mail: ma_randjbar@yahoo.com

Key indicators

Single-crystal X-ray study T = 115 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.028 wR factor = 0.059 Data-to-parameter ratio = 19.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Dihydronium 2,6-diaminopyridinium tris(2,6-pyridinedicarboxylato)ytterbate(III) dihydrate

The reaction of ytterbium(III) chloride with a self-assembling pyridine-containing ligand system, $[H_2pyda]^{2+}[pydc]^{2-}$ [pyda is 2,6-diaminopyridine (C₅H₇N₃) and pydcH₂ is 2,6-pyridine-dicarboxylic acid (C₇H₅NO₄)], in water leads to the formation of the title Yb^{III} complex, (H₅O₂)(Hpyda)₂[Yb(pydc)₃]·2H₂O. The Yb atom lies on a twofold rotation axis and is nine-coordinate with a distorted tricapped trigonal-prismatic geometry. The formula unit of the complex contains one (H₅O₂)⁺ dihydronium cation on a twofold rotation axis, two protonated pyda molecules and two water molecules.

Comment

Recently, we have reported the synthesis of a novel selfassembling pyridine-containing ligand system (Moghimi, Ranjbar, Aghabozorg, Jalali, Shamispur, Yap & Rahbarnoohi, 2002). We have succeeded in making mononuclear, binuclear and polymeric complexes of this ligand. Some of these complexes possess an [Hpyda]⁺ unit as a counter-ion (pyda is 2,6-diaminopyridine); this is the case for $[Hpyda][Cr(pydc)_2]$ -H₂pydc·0.5H₂O (Ranjbar et al., 2001a), [Hpyda]₂[Cu(pydc)₂]--H₂O (Ranjbar, Taghavipur et al., 2002) and [Hpyda][Zn(Hpydc)(pydc)]·3H₂O (Ranjbar, Aghabozorg et al., 2002) (pydcH₂ is 2,6-pyridinedicarboxylic acid). However, [Bi₂- $(pydc)_2Cl(H_2O)]_n$ (Ranjbar *et al.*, 2001*b*) is a polymeric complex without an [Hpyda]⁺ counter-ion. Our goal was the generation of a self-assembling coordination compound. The presence of [H₂pyda]²⁺ as counter-ion in the starting material causes the [pydc]²⁻ ligand to form different complexes from those that have been reported before, such as $Ln_2(pydc)_3(H_2O)_3$ (Brouca-Cabarrecq *et al.*, 2002) and $[Hpyda]_2[La_2(pydc)_4(H_2O)_4]\cdot 2H_2O$ (Moghimi, Ranjbar, Aghabozorg, Jalali, Shamispur & Chadha et al., 2002).

The anion of the title complex, (I), is nine-coordinate with a distorted tricapped trigonal-prismatic geometry. The Yb atom lies on a twofold rotation axis. The average Yb–O and Yb–N bond lengths are 2.369 (18) and 2.453 (2) Å, respectively, in agreement with previous reports (Fernandes *et al.*, 2001). The dihedral angle between the plane of the twofold symmetric ligand and each of the others is 75.24 (3)°.

Received 8 January 2004 Accepted 19 March 2004 Online 27 March 2004

Figure 1

The structure of the anion of the title complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (A) $\frac{3}{2} - x$, y, $\frac{1}{2} - z$.]

Figure 2

A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.

Of particular interest is the presence of the dihydronium cation, $(H_5O_2)^+$, in the structure. This lies on a twofold rotation axis. The $(H_5O_2)^+$ ion is known in HBr·2H₂O (Kearly, 1986), where the H-atom bridge is nearly symmetrical, but in other cases the O-H-O distances differ considerably. Modeling of the $(H_5O_2)^+$ ion from *ab initio MP2* computations (Ojamae *et al.*, 1995) has shown that the two O-H bridging bond lengths are 1.20 Å and the O-H-O bridge in the title complex is almost linear (170°) and the O1W-H1WC bond length is 1.22 Å, representing a very strong and symmetrical hydrogenbonding interaction between formal H₂O and H₃O⁺ units.

Experimental

To a solution of $[H_2pyda][pydc]$ (0.5 g, 1.8 mmol) in water (100 ml) was added a solution of $YbCl_3 \cdot 6H_2O$ (0.234 g, 0.6 mmol) in water

(20 ml) and the resulting yellow solution was stirred for 1 min. The pale-yellow solution was left to evaporate slowly at room temperature. After 2 d, yellow prismatic crystals were isolated; yield 68.3%, m.p. 531–533 K.

5008 independent reflections

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 30.0^{\circ}$

 $\begin{array}{l} h=-13 \rightarrow 13 \\ k=-11 \rightarrow 14 \end{array}$

 $l = -24 \rightarrow 24$

4154 reflections with $I > 2\sigma(I)$

Crystal data

(H₅O₂)(C₅H₈N₃)₂- $D_x = 1.776 \text{ Mg m}^{-3}$ [Yb(C₇H₃NO₄)₃]·2H₂O Mo $K\alpha$ radiation Cell parameters from 9085 $M_r = 961.71$ Monoclinic, P2/n reflections a = 9.6357(5) Å $\theta = 2.3 - 30.0^{\circ}$ $\mu = 2.69~\mathrm{mm}^{-1}$ b = 10.5295(5) Å c = 17.7932 (9) Å T = 115 (2) K $\beta = 94.953 (1)^{\circ}$ Prism. vellow $V = 1798.54 (16) \text{ Å}^3$ $0.25 \times 0.20 \times 0.15 \text{ mm}$ Z = 2

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1998) $T_{\min} = 0.552, T_{\max} = 0.695$ 16540 measured reflections

Refinement

 Refinement on F^2 H-atom parameters constrained

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $w = 1/[\sigma^2(F_o^2) + (0.0305P)^2]$
 $wR(F^2) = 0.059$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 0.89 $(\Delta/\sigma)_{max} < 0.001$

 5008 reflections
 $\Delta\rho_{max} = 3.83$ e Å⁻³

 259 parameters
 $\Delta\rho_{min} = -0.73$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

Yb1-O1	2.3513 (17)	Yb1-N1	2.447 (2)
Yb1-O5	2.3768 (18)	Yb1-N2	2.465 (3)
Yb1-O3	2.3799 (19)		. ,
O1-Yb1-O1 ⁱ	145.14 (10)	O5-Yb1-N1 ⁱ	138.90 (7)
O1-Yb1-O5	86.36 (6)	O3-Yb1-N1 ⁱ	73.88 (7)
$O1 - Yb1 - O5^{i}$	79.04 (6)	O1-Yb1-N1	65.66 (7)
O5-Yb1-O5 ⁱ	129.90 (10)	O5-Yb1-N1	70.03 (7)
$O1 - Yb1 - O3^{i}$	77.00(7)	O3-Yb1-N1	65.21 (7)
O5-Yb1-O3 ⁱ	143.85 (6)	N1 ⁱ -Yb1-N1	121.77 (10)
O1-Yb1-O3	130.85 (6)	O1-Yb1-N2	72.57 (5)
O5-Yb1-O3	78.41 (7)	O5-Yb1-N2	64.95 (5)
O3 ⁱ -Yb1-O3	88.51 (9)	O3-Yb1-N2	135.75 (5)
O1-Yb1-N1 ⁱ	134.72 (6)	N1-Yb1-N2	119.12 (5)
	1		

Symmetry code: (i) $\frac{3}{2} - x$, y, $\frac{1}{2} - z$.

The largest residual density peak lies near the Yb atom and is due to considerable absorption effects which could not be completely corrected. H atoms bonded to O atoms were located in a difference Fourier map, and others were positioned geometrically (C-H = 0.95 Å). All were included in the refinement in a riding-model approximation, with U_{iso} (H) values set at $1.2U_{eq}$ of the parent atom. O-H distances are in the range 0.72–1.22 Å, except for the bridging H atom, for which O-H = 1.22 Å; N-H distances are in the range 0.72–0.94 Å.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are particularly grateful to the Teacher Training University for financial support, and Dr F. M. Dolgushin from

the General and Technical Chemistry Division, Academy of Sciences of Russia, for X-ray crystallographic data.

References

- Brouca-Cabarrecq, C., Fernandes, A., Jaud, J. & Costes, J. P. (2002). *Inorg. Chim. Acta*, **332**, 54–60.
- Bruker (1998). *SMART* (Version 5.059) and *SAINT-Plus* (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fernandes, A., Jaud, J., Dexpert-Ghys, J. & Brouca-Cabarrecq, C. (2001). Polyhedron, 20, 2385–2391.
- Kearly, G. J. (1986). J. Chem. Soc. Chem. Commun. p. 1801.

- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamispur, M. & Chadha, R. K. (2002). *Can. J. Chem.* 80, 1687–1696.
- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamispur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133–145.
- Ojamae, L., Shavitt, I. & Singer, S. J. (1995). Int. J. Quantum Chem. 29, 657– 660.
- Ranjbar, M., Aghabozorg, H., Moghimi, A. & Yanovsky, A. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 626–628.
- Ranjbar, M., Aghabozorg, H., Moghimi, A. & Yanovsky, A. (2001b). Anal. Sci. 17, 1469–1470.
- Ranjbar, M., Aghabozorg, H., Moghimi & Yap, G. P. A. (2002). Anal. Sci. 18, 219–220.
- Ranjbar, M., Taghavipur, M., Aghabozorg, H., Mogimi, A., Jalali, F. & Shamispur, M. (2002). Pol. J. Chem. 76, 785–794.
- Sheldrick, G. M. (1998). *SADABS* (Version 2.01) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.