Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Masoud Rafizadeh, ${ }^{\text {a }}$
Maryam Ranjbar ${ }^{\text {b* }}$ and Vahid Amani ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ${ }^{\mathbf{b}}$ Chemical Industries Research Center, Iranian Research Organization for Science and Technology (IROST), 71 Forsat St., Enghelab Ave., 15819 Tehran, Iran

Correspondence e-mail:
ma_randjbar@yahoo.com

Key indicators

Single-crystal X-ray study
$T=115 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.059$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dihydronium 2,6-diaminopyridinium tris(2,6-pyridinedicarboxylato)ytterbate(III) dihydrate

The reaction of ytterbium(III) chloride with a self-assembling pyridine-containing ligand system, $\left[\mathrm{H}_{2} \mathrm{pyda}\right]^{2+}[\mathrm{pydc}]^{2-}$ [pyda is 2,6-diaminopyridine $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3}\right)$ and pydcH H_{2} is 2,6-pyridinedicarboxylic acid $\left.\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\right]$, in water leads to the formation of the title $\mathrm{Yb}^{\text {III }}$ complex, $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)(\mathrm{Hpyda})_{2}\left[\mathrm{Yb}(\text { pydc })_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The Yb atom lies on a twofold rotation axis and is ninecoordinate with a distorted tricapped trigonal-prismatic geometry. The formula unit of the complex contains one $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)^{+}$dihydronium cation on a twofold rotation axis, two protonated pyda molecules and two water molecules.

Comment

Recently, we have reported the synthesis of a novel selfassembling pyridine-containing ligand system (Moghimi, Ranjbar, Aghabozorg, Jalali, Shamispur, Yap \& Rahbarnoohi, 2002). We have succeeded in making mononuclear, binuclear and polymeric complexes of this ligand. Some of these complexes possess an [Hpyda] ${ }^{+}$unit as a counter-ion (pyda is 2,6-diaminopyridine); this is the case for [Hpyda] $\left[\mathrm{Cr}(\mathrm{pydc})_{2}\right]$-$\mathrm{H}_{2}$ pydc $\cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Ranjbar et al., 2001a), [Hpyda $]_{2}\left[\mathrm{Cu}(\text { pydc })_{2}\right] \cdot-$ $\mathrm{H}_{2} \mathrm{O}$ (Ranjbar, Taghavipur et al., 2002) and [Hpyda] $\mathrm{Zn}(\mathrm{H}-$ pydc)(pydc)] $3 \mathrm{H}_{2} \mathrm{O}$ (Ranjbar, Aghabozorg et al., 2002) (pydcH $)_{2}$ is 2,6-pyridinedicarboxylic acid). However, $\left[\mathrm{Bi}_{2}-\right.$ (pydc) $\left.)_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (Ranjbar et al., 2001b) is a polymeric complex without an [Hpyda] ${ }^{+}$counter-ion. Our goal was the generation of a self-assembling coordination compound. The presence of $\left[\mathrm{H}_{2} \text { pyda }\right]^{2+}$ as counter-ion in the starting material causes the $[p y d c]^{2-}$ ligand to form different complexes from those that have been reported before, such as $\mathrm{Ln}_{2}(\text { pydc })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \quad$ (Brouca-Cabarrecq et al., 2002) and [Hpyda] $\left.]_{2}\left[\mathrm{La}_{2} \text { (pydc) }\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ (Moghimi, Ranjbar, Aghabozorg, Jalali, Shamispur \& Chadha et al., 2002).

The anion of the title complex, (I), is nine-coordinate with a distorted tricapped trigonal-prismatic geometry. The Yb atom lies on a twofold rotation axis. The average $\mathrm{Yb}-\mathrm{O}$ and $\mathrm{Yb}-\mathrm{N}$ bond lengths are 2.369 (18) and 2.453 (2) Å, respectively, in agreement with previous reports (Fernandes et al., 2001). The dihedral angle between the plane of the twofold symmetric ligand and each of the others is $75.24(3)^{\circ}$.

Received 8 January 2004 Accepted 19 March 2004 Online 27 March 2004

Figure 1

The structure of the anion of the title complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (A) $\frac{3}{2}-x$, $\left.y, \frac{1}{2}-z.\right]$

Figure 2
A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.

Of particular interest is the presence of the dihydronium cation, $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)^{+}$, in the structure. This lies on a twofold rotation axis. The $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)^{+}$ion is known in $\mathrm{HBr} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Kearly, 1986), where the H -atom bridge is nearly symmetrical, but in other cases the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ distances differ considerably. Modeling of the $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)^{+}$ion from ab initio MP2 computations (Ojamae et al., 1995) has shown that the two $\mathrm{O}-\mathrm{H}$ bridging bond lengths are $1.20 \AA$ and the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ bridging bond angle is 173.5°. The $\mathrm{O}-\mathrm{H}-\mathrm{O}$ bridge in the title complex is almost linear $\left(170^{\circ}\right)$ and the $\mathrm{O} 1 W-\mathrm{H} 1 W C$ bond length is $1.22 \AA$, representing a very strong and symmetrical hydrogenbonding interaction between formal $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$units.

Experimental

To a solution of [H_{2} pyda][pydc] $(0.5 \mathrm{~g}, 1.8 \mathrm{mmol})$ in water $(100 \mathrm{ml})$ was added a solution of $\mathrm{YbCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.234 \mathrm{~g}, 0.6 \mathrm{mmol})$ in water
$(20 \mathrm{ml})$ and the resulting yellow solution was stirred for 1 min . The pale-yellow solution was left to evaporate slowly at room temperature. After 2 d, yellow prismatic crystals were isolated; yield 68.3%, m.p. $531-533 \mathrm{~K}$.

Crystal data

$\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}\right)_{2}{ }_{2}$
$\left[\mathrm{Yb}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=961.71$
Monoclinic, $P 2 / n$
$a=9.6357$ (5) A
$b=10.5295$ (5) \AA
$c=17.7932$ (9) \AA
$\beta=94.953$ (1) ${ }^{\circ}$
$V=1798.54$ (16) \AA^{3}
$Z=2$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.552, T_{\text {max }}=0.695$
16540 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.059$
$S=0.89$
5008 reflections
259 parameters
$D_{x}=1.776 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9085

> reflections
$\theta=2.3-30.0^{\circ}$
$\mu=2.69 \mathrm{~mm}^{-1}$
$T=115$ (2) K
Prism, yellow
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

5008 independent reflections
4154 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-11 \rightarrow 14$
$l=-24 \rightarrow 24$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0305 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=3.83 \mathrm{e}_{\mathrm{m}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.73 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Yb1-O1	2.3513 (17)	Yb1-N1	2.447 (2)
$\mathrm{Yb} 1-\mathrm{O} 5$	2.3768 (18)	$\mathrm{Yb} 1-\mathrm{N} 2$	2.465 (3)
$\mathrm{Yb} 1-\mathrm{O} 3$	2.3799 (19)		
$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{O} 1^{\text {i }}$	145.14 (10)	$\mathrm{O} 5-\mathrm{Yb} 1-\mathrm{N} 1^{\mathrm{i}}$	138.90 (7)
$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{O} 5$	86.36 (6)	$\mathrm{O} 3-\mathrm{Yb} 1-\mathrm{N} 1^{\text {i }}$	73.88 (7)
$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{O} 5^{\text {i }}$	79.04 (6)	$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{N} 1$	65.66 (7)
$\mathrm{O} 5-\mathrm{Yb} 1-\mathrm{O} 5^{\text {i }}$	129.90 (10)	$\mathrm{O} 5-\mathrm{Yb} 1-\mathrm{N} 1$	70.03 (7)
$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{O} 3^{\text {i }}$	77.00 (7)	$\mathrm{O} 3-\mathrm{Yb} 1-\mathrm{N} 1$	65.21 (7)
$\mathrm{O} 5-\mathrm{Yb} 1-\mathrm{O} 3^{\text {i }}$	143.85 (6)	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Yb} 1-\mathrm{N} 1$	121.77 (10)
$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{O} 3$	130.85 (6)	$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{N} 2$	72.57 (5)
$\mathrm{O} 5-\mathrm{Yb} 1-\mathrm{O} 3$	78.41 (7)	$\mathrm{O} 5-\mathrm{Yb} 1-\mathrm{N} 2$	64.95 (5)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Yb} 1-\mathrm{O} 3$	88.51 (9)	$\mathrm{O} 3-\mathrm{Yb} 1-\mathrm{N} 2$	135.75 (5)
$\mathrm{O} 1-\mathrm{Yb} 1-\mathrm{N} 1^{\mathrm{i}}$	134.72 (6)	$\mathrm{N} 1-\mathrm{Yb} 1-\mathrm{N} 2$	119.12 (5)

Symmetry code: (i) $\frac{3}{2}-x, y, \frac{1}{2}-z$.
The largest residual density peak lies near the Yb atom and is due to considerable absorption effects which could not be completely corrected. H atoms bonded to O atoms were located in a difference Fourier map, and others were positioned geometrically $(\mathrm{C}-\mathrm{H}=$ $0.95 \AA$). All were included in the refinement in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ of the parent atom. $\mathrm{O}-\mathrm{H}$ distances are in the range $0.72-1.22 \AA$, except for the bridging H atom, for which $\mathrm{O}-\mathrm{H}=1.22 \AA ; \mathrm{N}-\mathrm{H}$ distances are in the range 0.72-0.94 A.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are particularly grateful to the Teacher Training University for financial support, and Dr F. M. Dolgushin from

metal-organic papers

the General and Technical Chemistry Division, Academy of Sciences of Russia, for X-ray crystallographic data.

References

Brouca-Cabarrecq, C., Fernandes, A., Jaud, J. \& Costes, J. P. (2002). Inorg. Chim. Acta, 332, 54-60.
Bruker (1998). SMART (Version 5.059) and SAINT-Plus (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Fernandes, A., Jaud, J., Dexpert-Ghys, J. \& Brouca-Cabarrecq, C. (2001). Polyhedron, 20, 2385-2391.
Kearly, G. J. (1986). J. Chem. Soc. Chem. Commun. p. 1801.

Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamispur, M. \& Chadha, R. K. (2002). Can. J. Chem. 80, 1687-1696.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamispur, M., Yap, G. P. A. \& Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133-145.

Ojamae, L., Shavitt, I. \& Singer, S. J. (1995). Int. J. Quantum Chem. 29, 657660
Ranjbar, M., Aghabozorg, H., Moghimi, A. \& Yanovsky, A. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 626-628.
Ranjbar, M., Aghabozorg, H., Moghimi, A. \& Yanovsky, A. (2001b). Anal. Sci. 17, 1469-1470.
Ranjbar, M., Aghabozorg, H., Moghimi \& Yap, G. P. A. (2002). Anal. Sci. 18, 219-220.
Ranjbar, M., Taghavipur, M., Aghabozorg, H., Mogimi, A., Jalali, F. \& Shamispur, M. (2002). Pol. J. Chem. 76, 785-794.
Sheldrick, G. M. (1998). SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

